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J. Phys. A: Math. Gen. 20 (1987) 4173-4190. Printed in the UK 

On some exact solutions of a system of non-linear 
differential equations for spinor and vector fields 

W I Fushchich and R Z Zhdanov 
Institute of Mathematics, Repin Street 3, Kiev, USSR 

Received 8 August 1986, in final form 28 January 1987 

Abstract. The problem of finding ansatze for a non-linear Dirac equation which is invariant 
under the extended Poincark group is solved. With the help of these ansatze some 
multiparameter families of exact solutions of non-linear Dirac and Dirac-Maxwell 
equations are constructed. 

1. Introduction 

In the present work using ideas and methods of S Lie (see Lie 1891, Ames 1972) we 
have constructed large classes of exact solutions of the non-linear Dirac equation 

( Y r P P  + A ( & h ) 1 ’ 2 k ) + ( x )  = 0 k # O  (1.1) 

where 7, = 4 x 4 Dirac matrices, pr = ig,,a/ax,, (L = ++yo, x = ( x o ,  x ,  , x 2 ,  x 3 ) ,  4 is a 
four-component spinor and k, A are parameters, and of the system of eight non-linear 
equations, 

( Y , P P + h l Y , . r 8 ” + M l ) + ( X ) = 0  

P V P Y . r 8 ,  -P,P”& =exp(~Y ,+)+~ , (m ,+A, . r8“d”)  
(1.2) 

where d , ( x )  is the vector potential of the electromagnetic field and e, A I ,  A*,  m l ,  m2 
are constants. If we choose m2 = A 2  = 0, then system (1.2) coincides with equations of 
the classical electrodynamics describing interaction of electromagnetic and spinor 
fields. 

To construct multiparameter families of exact solutions of (1.1) and (1.2) we 
essentially use their symmetry properties and the ansatz 

$ ( X I  = A ( x ) c p ( w ) + B ( x )  (1.3) 
suggested by Fushchich (1981,1983) and effectively realised by Fushchich and Shtelen 
(1983a, b)  and Fushchich and Serov (1983) for a number of non-linear wave equations. 
A ( x )  is a 4 x 4  matrix and B ( x )  is a four-component spinor, algorithms for their 
construction being cited below, and ~ ( w )  is the column vector, components of which 
depend in general on three invariant variables o = {wl, w 2 ,  w 3 }  (for more details see 
Fushchich (1981,1983)). Later we shall consider the case when B ( x )  = 0. 

On using finite transformations it is established that equation (1.1) is invariant 
under the extended PoincarC group @(l,  3), i.e. under the Poincari group 8 ( 1 , 3 )  
supplemented by a group of scale transformations. 

0305-4470/87/134173 + 18$02.50 0 1987 IOP Publishing Ltd 4173 
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Basis elements of the Lie algebra A$( 1,3) have the form 

J,” = X,P” - X”P, + S,” 
(1.4) 

p, =PAL 
D=x,p*-ik S,, = W ~ ) ( Y , Y ~  - Y ~ Y , )  p, v = 0,. 

A general scheme for constructing solutions of the system (1.1) (solutions of the 
system (1.2) are obtained in an analogous way) is as follows. We look for solutions 
of equation (1.1) which are invariant under the subgroup of the group @( 1,3)  generated 
by linear combination of all basis elements of A 9 (  1,3) 

Q =  Cp”J,,+CooD+C’P, (1.5) 

where C,’, Coo, C+ are constants and p, v =-. 

( PDE) : 
The matrix A(x) is a solution ofthe following system of partial differential equations 

QA(x) = 0. (1.6) 

Invariant variables are the first integrals of the Euler-Lagrange system of ordinary 
differential equations (ODE) 

where 6 ,  = C””x, + Cooxp + C,. 
If one knows an explicit form of the matrix A(x) then after substituting (1.3) into 

the corresponding equation we shall obtain an equation for a spinor cp( o) depending 
on three invariant variables { U , ,  02, w 3 }  only. This means that ansatz (1.3) with the 
chosen matrix A(x) provides separation of variables in equation (1.1). Solutions of 
the corresponding equation for cp(w) being substituted in (1.3) yield the solutions of 
the initial equation. 

To realise this scheme it is necessary first of all to construct in an explicit form 
matrices A(x) satisfying (1.6). So one has to solve the first-order linear system of 16 
PDE with variable coefficients. It is rather difficult to solve such a system by standard 
methods, which is why we use the following trick. The operator Q is transformed into 
another operator 

Q’ = WQ W-’ (1.8) 

W(x, PI = exp(@2) w-’(x, p) = exp( -02) (1.9) 

z = epvJ,, + eooD + efip,. 

with the help of the invertible operator 

where 

(1.10) 

Transformation W is so chosen that operator Q’ is as simple as possible. This 
purpose can always be achieved because of the PoincarC invariance of system (1.1). 
From the physical point of view this means that the non-linear Dirac equation is solved 
in the fixed reference system. The construction of the solutions which do not depend 
on the reference system (ungenerable solutions) is the next step. 
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2. Construction of the matrix A(x)  

Before proceeding with a direct solution of the system (1.6) let us simplify it using the 
method described in the introduction. To do this we need the Campbell-Hausdorff 
formula 

where Q1, Q2 are operators and [A, B] = AB - BA. 
A fundamental role is played by the following lemma. 

~ t " m a .  The Operator Q = C*"J,, = AkMk 4- BIN, where Mk = -fEklmJlm, Nk = JOk, by 
a transformation Q + Q' = VQV-I, where V = exp( f3p"Jwy), can be reduced to one of 
the following forms: 

(i)  0' = aJOl + PJ23 ( A .  B ) ~ +  ( A ~  - B ~ ) ~  z o 
(ii) Q'=a(J01+J12) A . B = A ~ - B ~ = O .  

Pro05 Let us introduce new operators 
- 

J, = (i/2)(Ma +iN,) K, = (i/2)(Ma - iNa)  a = 1 , 3 .  

One can easily check that the following commutational relations hold: 

[Ja, Jb l  = iEabcJc [Ka, Kbl= iEabcKc LJa, Kbl=O (2.2) 

SO Q=akJk+ b&, where ak=-Bk-iAk and bl=BI-iAf. 
Using (2.1) and (2.2) one obtains 

Q'=  VIQV;' 

= (a :+a~+a:) ' /2J l  + [ ( a : + a : + a : ) ' / 2 ] * K ,  

= aJoi  + PJ23 

where 

VI = exp[-i tan-'(a2/a3)Jl] exp{i tan-'[a,(a:+ a : ) - ' / 2 +  rr/2]J2} 

x exp[-i tan-'(b2/b3)K,] exp{i tan-'[b,(b:+ b:)-1/2+ rr/2]K2}. (2.3) 
It is evident that these formulae lose their validity in the case 

a:+a:+a :=O e A ~ = B ~  A - B = O .  

Therefore one can use this approach only in case (i). Let us now consider case 
(ii). It follows from (2.1) that 

exp( OM, )AkMk exp(- OM,) = AkMk COS 8 A,hf, ( 1  - COS 6) E,k&Ml Sin e (2.4) 
(no summation is performed over a )  

exp(BM,)BfNl exp(-OM,) = B,N, COS e +  B,N,(l -cos 8)+EakrBkNI sin e (2.5) 
(no summation is performed over a ) .  
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Using identities (2.4) and (2.5), one can be convinced that the following equality 
holds: 

Q’= V,QV;’ = V2(AkMk + BIN,) V;l 

= - I A [  sgn A 3 ( J 0 1 + J 1 2 )  

where 

V2 = exp[tan-I( A,/  A2)M3] exp{tan-I[ (A: + A:)’”/A3]M,} 

x expn{tan-’[B3lAI/(B2A, - BlA2)I + 7r@(BlA2- B2A1))M31 

This completes the proof. 

Let us prove the main statement. 

neorem.  The operator Q = AkMk + BINI + CooD+ CWP, with the help of transforma- 
tion (1.8) can be reduced to one of the following forms: 
(A) A * B = O  A* = ~2 

(i) Q‘ = Jol + J12 + U D  (2.6) 

(ii) (2.7) 

(iii) Q’=JoI  + J12+PP3 (2.8) 

(iv) Q’= J2,+aD (2.9) 

( V I  Q‘ = Jol + bJ,, + U D  (2.10) 

(vi) (2.11) 

(vii) Q‘ = Jol + P2 (2.12) 

Q’ = Jol + JI2 + pP3 - Po 

( A .  B)*+ ( A ~  - B,)’ # o (B) 

Q‘ = Jol + 6523 + D + pPo 

(viii) Q’ = J23 + crI Po+ a2P1  (2.13) 

(C) A = B = O  

(ix) Q’= D (2.14) 

(XI Q’ = Po+ PI (2.15) 

(xi) Q’ = Po (2.16) 

(xii) Q’= P , .  (2.17) 

R o o t  If A # 0, B # 0 then it follows from the lemma that there exists an  operator VI  
(V,) of the form (1.9) such that 

( a )  under A B = A’- B2 = 0 

v,Qv;’= ~ ( J ~ , + J , ~ ) + ~ D + ~ ~ P , ,  

v,Qv;’= a ~ ~ , + p ~ ~ ~ + e ~ + e ~ ~ , .  
( b )  under ( A  - B)’+ ( A 2  - B2)’ Z 0 
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It is clear from (1.6) and (1.7) that operators Q and aQ, a f 0, generate the same 

We need the following formulae which are consequences of the Campbell- 

exp(iAgP,,)Jmp exp(-iA~P,,)=Jup+(ApPu -Ampp)  (2.18) 
exp(iApP,,)D exp(-iA’”P,,) = D-A”P, (2.19) 

invariant solutions. One may suppose that a = 1.  

Hausdodl formula: 

exp(iA”P,)P, exp(-iA”P,,) = Pa. (2.20) 
Let us consider the case ( a ) :  

Q’+ Q”=exp(iA~P, , ) (Jo,+Jl2+OD+ OmPo) exp(-iApP,) 

Under O f 0 one can always choose A, so that 
= Jo I + J ,  + OD + OpP, + A Po - A OP, + AZP, - A 1 P2 - Oh “P, . 

0” = J~~ + J , ~  + eD 

Q” = J o l +  Jl2 + aP0 + pP3 
and under O = 0 so that 

a s o .  
If in the last operator a f 0, then 
Q”’=exp(-i ln (a(D)(Jo l  +J12+ aPo+/?P3) exp(i ln la (D)  

If a = 0 then 
= Jo , + J ,  2 - Po + pP3 . 

Q” = Jol+ JI2 + PP3. 
Let us now consider case ( b ) .  If a # 0 then on dividing into a and on transforming 

the operator Q according to (2.18)-(2.20) we obtain 
Q’= exp(iAwP,,)(Jo, + bJ23+ OD+ O”P,) exp(-iA@P,) 

Under 8 f f 1,  0 2 +  b2 # 0 it is always possible to choose A,, so that 
Q’ = Jol + bJ2, + OD. 

Under O=*l it is possible to choose A,, so that 

Under O = b = 0 there exist such A,, that 

= Jol+ ( A I Po - A OPI ) + bJ23 + b ( A 3 P2 - A 2P3) + OD - OA ’P,, + OWP, . 

Q‘ = Jol+ bJ23 + SD +/?Po. 

Q’ = J O ,  + Pz . 
Under a = 0 using formulae (2.18)-(2.20) one can check that the operator Q can 

be reduced to one of the following forms: 
Q’ = JZ3 + a D  
Q’ = 5 2 3  + a 1 Po + a2P1 

ezo 
e = o .  

The only thing left is to consider the case A = B = 0, i.e. Q = OD + W P , .  Using formulae 
(2.18)-(2.20) it is easy to be convinced that under O = 0 

If 0=0 then analysing three possibilities f3,,0F =0,  8,8p>0,  @,,ep < O  we obtain 
operators (2.15)-(2.17). The theorem is proved. 

Note 1 .  When proving the theorem we used only commutational relations of an algebra 
A@(l ,  3 )  and we did not use its concrete representation. 

exp[(i/e)OrP,,](eD+ OrP,,) exp[ -(i/O)OwP1] = OD. 
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Note 2. It is seen from the proof that @( l ,  3)-invariant solutions are exhausted by 
solutions generated from ones invariant under operators (2.6)-(2.17) with the help of 
transformations from @(I,  3). 

This theorem essentially simplifies the problem of finding ansatze because instead of 
integrating the system (1.6) where Q is an operator of the general form (1.5), it is 
enough to find a partial solution of this system with Q having the form (2.6)-(2.17). 

For example, let us consider case (2.9). The matrix A(x) is a solution of the 
following matrix system of PDE 

where Ax- = aA/ax,, a = 0. 
x ~ A ~ ~ - x ~ A ~ ~ + ~ Y ~ Y ~ A +  UX,A, -akA=O (2.21) 

4 x 1  = f ( x )  exp(g(x)y,y,). (2.22) 

We look for a partial solution of (2.21) of the form 

Substituting (2.22) into (2.21) we obtain 

A partial solution of the last system is given by formulae 
[ X 2 f x j - X 3 f x 2 + a X p f x r  -akf+f(x2gx3-x3gx2+ ax,gxr + f ) y 2 y 3 1  exp(g(x)y2y3) =o. 

g(x)  = - 4  tan-'(x2/x3). 2 - k / 2  A x )  = (4-t x3) 
Finally 

A(x) = exp[ - f y 2 ~ 3  tan-'(x2/x3)](x:+ 
In the same way we have obtained matrices A(x) which correspond to operators 

(2.23) 
(2.24) 
(2.25) 
(2.26) 
(2.27) 

(2.28) 

(2.29) 

(2.30) 
(2.31) 
(2.32) 
(2.33) 
(2.34) 
(2.35) 
(2.36) 
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3. Ansatze for the non-linear Dirac equation (1.1) 

As pointed out in the introduction, to find invariant variables w , ( x ) ,  w 2 ( x ) ,  w 3 ( x )  it 
is necessary to find all the first integrals of the Euler-Lagrange system of ODE 

- dxw = c, x + c,x, + c, . 
d7 (3 .1)  

Because of the lemma proved above, one can restrict oneself to the following cases 

(i)  Col = -C12 = 1 Coo = a rest coefficients are equal to 0 

(ii) CO, = -C12 = 1 CO= -1 

of the system (3 .1) :  

c3 = - p  rest coefficients are equal to 0 

(iii) CO, = -C12 = 1 c3 = -p rest coefficients are equal to 0 

(iv) C23= -1 C,=a rest coefficients are equal to 0 

(v) c o l =  1 C23z-b Coo = a rest coefficients are equal to 0 

(vi) Col = 1 C23 = - b c,= 1 

C0=P rest coefficients are equal to 0 

(vii) CO, = 1 c2=-1 rest coefficients are equal to 0 

(viii) C23 = -1 

(ix) C,,=O c,= 1 c, = o  

(xi) C,, = C, = 0 C , = C 2 = C 3 = 0  co= 1 

(xii) C,, = C ,  = 0 C 0 = C 2 = C 3 = 0  c, = -1. 

CO= a, 

rest coefficients are equal to 0 c, = -a, 

(x) c,, = CO, = 0 c,= -c, = 1 C2=C3=0  

Solution of the system (3.1) in cases (i)-(xii) above is carried out in the usual way, 
so we write down its first integrals omitting intermediate calculations. 

2 2 2  (i) a # O  w ,  = (xo - x ,  - X 2 ) X i 2  0 2  = ( xo  - x2)x; I  
(3.2) w3 = axl (xo - x2)- l  - In(xo - x2)  

a=O w ,  =xo-x2 U 2  = X3 

2 2 2  w3 = xo - x ,  - x2 

(ii) w l = x 3 + p ( x o - x 2 )  w 2  = 2x, + ( xo - x2)2 

w3 = 3x3 + 3x,(xo - x2) + (xo - x2)3 

(3.3) 

(3.4) 

(3.5)  
2 2 2  (iii) w ,  = xo -x2  0 2  = xo-XI -x2 0 3  = P X l  - b o  - X 2 b 3  

(iv) w ,  = xox;' w2 = ln (x :+x : )+2a  tan-'(x,/x,) (3.6) 

0 3  = (x :+x: ) (xox l ) - '  
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(v) a # -1 w 3 =  b ln(x:+x:)+2a tan-'(x2/x3) 
(3.7) 

(3.8) 

U ,  = (xo+xl)~' I (x~-xx:)-(a+')  

a = - 1  w,=xo+x,  0 2  = (x i -  x:)(x:+x:)-' 
w 2  = (x i  - xi)(  x: + x y  

w3 = b ln(x:+x:)-2 tan-'(x2/x3) 
(vi) w l  = (2x0+2x1+p) exp[2~- ' (x , -xo)]  

w 3  = b ln(x:+x:)+2 tan-'(x2/x3) 
w2 = (2x0+ 2x1 + p)(x:+ x:)-' (3.9) 

w 2  = ln(xo+ x,) - x2 w3 = x3 (3.10) 

w 2  = t a n - ' ( x , / ~ ~ ) + p ~ x ~ + ~ ~ x ,  
(3.11) 

(ix) w, = X,XO' a = m  (3.12) 
(x) w,=x,+x,  0 2  = x2 w3 = x3 (3.13) 
(xi) w, =x, a = l , 3  (3.14) 
(xii) w 1  =xo  w* = x2 w3=x3. (3.15) 
Now substituting (2.23)-(2.36) and (3.2M3.15) into (1.3) under B(x) = 0 we obtain 

2 2  (vii) w l  = xo-xl 
(viii) w1 = x:+x: 

w3 = a,xo+ .'XI -alp1 + . 2 P 2  = 1 

- 

the following set of ansatze for the non-linear Dirac equation (1.1): 

(i)  a f O  + ( X I  = ( X 0 - X 2 ) r k  exP[h-'YI(Y2- Yo)  ln(xo-x,) ldw) 
(3.16) 

(3.17) 
(3.18) 
(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
(3.24) 
(3.25) 
(3.26) 
(3.27) 
(3.28) 
(3.29) 

The problem of finding all the ansatze for @( l ,  3)-invariant solutions is therefore 
completely solved. The second step of the algorithm-the reduction of the Dirac 
equation-will be realised in the next section. 
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4. Reduction of the non-linear Dirac equation (1.1) 

(4.9) 

(4.10) 

(4.11) 
(4.12) 
(4.13) 
(4.14) 
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A partial solution of one of the equations (4.1)-(4.14) through formulae (3.16)- 
(3.29) gives a partial solution of the non-linear Dirac equation. To obtain a partial 
solution of the reduced equation one can again apply the reduction procedure. But 
it demands a knowledge of the symmetry of equations (4.1)-(4.14). Investigation of 
symmetrical properties of equations in question is a very interesting problem (for 
example, equation (4.12) possesses an infinite-parameter symmetry group) and it will 
be considered in a future paper. We shall perform the direct reduction (if it is possible) 
of systems (4.1)-(4.14) to systems of ODE. 

Let us suppose that in (4.1) cp = cp(w2). It follows that 

k(r2 - yO)(P + W 2 ( 7 0 -  y2-  0 2 Y 3 ) ( P w 2  = i A  ( @ ~ ) 1 / 2 k ~ *  (4.15) 

Similarly, if one chooses cp = cp(w3) then 

k(r2 -  YO)^ + t [ ( ~ 2  -  YO)(^ + ~ 3 )  + ay,]cp,, = i A  ( @ c p ) ’ / 2 k c p .  (4.16) 

(4.15) and (4.16) are non-linear systems of ODE. 

Equation (4.2) gives the following system of ODE: 

(YO- Y ~ ) P , ,  + &J T’( YO- 7 2 1 9  = ih (@CP ) 1 / 2 k ~ .  

From (4.3) it follows that 

[ 7 3  + P ( Yo - Y2)I  cp,, = iA ( @ c p  ) 1 / 2 k c p  

2y1cpw2 = iA(@cp)1/2kcp. 

(4.17) 

(4.18) 

(4.19) 

Systems (4.4) and (4.5) can be reduced to the systems of ODE of the form 

2P(Yo- Y2)(0,,+(Yo- YdY4cp =2iAP(bcp)’/2kcp (4.20) 

i( 1 - 2kIY3cp + 2( Y3 + aydcp,, = ih ( @ c p ) ” 2 k c p .  (4.21) 

We did not succeed in reducing systems (4.6)-(4.8) to ODE. From (4.9) one can 

~ ( Y o + Y ~ ) ~ ~ + [ ( Y ~ + Y I ) ~ ~ + Y ~ -  ~ ~ I c p ~ ,  =iA(@cp)1’2kcp (4.22) 

;(Yo+ Y I ) ~  + (Yo+ Y I  - ~ 2 ) 4 0 , ~  = iA ( Q v ) ” ~ ~ v  (4.23) 

;(Yo+ YI)cp + 7347% = iA(4cp)’/2kcp. (4.24) 

obtain three systems of ODE: 

Equation (4.10) gives the system 

& J ; ’ / ~ + ~ Y ~ W : / ~ ~ , ,  = iA(@cp)’’2kcp. (4.25) 
Equations (4.11)-(4.14) are reduced to the following systems of ODE: 

(4.26) 

(4.27) 

(4.28) 

(4.29) 
(no summation is carried over a ) .  

Symmetry properties of the non-linear Dirac equation therefore enable us to reduce 
the problem of finding its partial solution to an essentially simpler one of integration 
of systems of ODE (4.15)-(4.29). To solve these systems one can apply various methods 
including numerical ones. 



Non-linear diferential equations for spinor and vector fields 4183 

5. Construction of exact solutions of the non-linear Dirac equation (1.1) 

We shall consider only systems of ODE solvable in quadratures, but we shall not 
consider cases which give already known solutions. 

The general solution of (4.19) has the form 

( ~ ( 0 ~ )  = exp[ - ( ~ A / ~ ) ( X X ) " ~ ~ Y ~ W ~ I X  
where x is an arbitrary constant spinor. 

Substituting the above result into (3.18), we obtain a solution of the initial equation 
(1.1): 

$(XI = exp[f(yo- r2)(xo-x2)l  exp{ - (iA/2)(Xx)' /Zkrl[2~i + ( ~ ~ - x ~ ) ~ ] ) x .  

cp(w2) = exp[ -fiA i x ( 1 +  a2)- ' (73+ a72h21x 

(5.1) 

Let us next consider equation (4.21). Under k = f its general solution has the form 

(5.2) 

where x is a constant spinor. 

If a =0, then making a change of variables we obtain 
Under k # f, a # 0, we did not succeed in integrating the corresponding equation. 

c p ( 4  = e x P [ W -  1 ) w 2 1 4 ( 4  

2 exp[a( 1 - 2 k ) k - l o ~ ~ ] y ~ + , ~  = i A (  & ) ' / Z k + .  

The general solution of the last equation is given by the formula 

4 = e~p{(2iAk)(l-2k)-'(~x)'/~~ exp[a(2k - l)k-'w2]y3}x 

where x is the arbitrary constant spinor. 

non-linear Dirac equation. 
Substituting the above results into (3.20) we obtain the following solutions of the 

If k = f  
2 -1 /4 

= (x:+ x3) exp{-fy2y3 tan-'(x2/x3)) 

(5.4) 
It is important to note that equation (4.3) can be reduced to the two-dimensional 

Dirac equation. This fact can be used for obtaining new non-trivial classes of solutions 
of (1.1). If we choose in (4.3), cp = cp(w,, w 2 )  then 

( 5 . 5 )  [ 7 3  + P (Yo  - Y2)1cpw, + 2YlcpuJ, = i A  (Qv)'/2kv. 
Having made a change of variables 

-1 
21 = 0 1  2 - 2w2 

and denoting 

r1= Y 3 + P ( Y o -  Y2) r2= Y1 
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we obtain 

r 1 ~ L , + r 2 ~ Z Z = i ~ ( ~ ~ ) l / 2 k ~  

where rarb + rbra = 2 g a b  and a, b = 1,. 
(i)  We look for a solution of (5.6) in the form 

Cp ( 2 )  = ( r a Z a f ( Z b Z b )  + ig( zbzb)  )x (5.7) 

g are unknown scalar functions. Substitution of where x is a constant spinor and 
(5.7) into (5.6) gives the system of ODE 

f+w df/dw=fA(fx)1’2k(g2-Wf) 2 1 / 2 k  g 

dg/dw =fA(fx)1/2k(g2-Wf 2 ) 1 / 2 k  J: 

The partial solution of this system is given by the formulae ( k  < 0) 

(ii) We shall look for a solution of (5.6) in the form 

Cp ( z )  = r a z a  ( Z b z b ) - l 4  ( P a z a /  ZbZb) a, b=- 

(5.8) 

(5.9) 

where 4 = 4 ( w )  is a four-component spinor, w = ( P a z a ) / ( z b z b )  and k = 4. It follows 
from (5.6) that 4 ( w )  satisfies the system of ODE of the form 

( r a P a )  d4 /dU =iA(&4)4 
whose general solution has the form 

4 ( w ) = exP[ - iA (fx)(P: + P ; ) - ’ ( r a P a  )w  Ix. (5.10) 

Using formulae (3.18), (5.7)-(5.10) we obtain the following solutions of the non- 

If k < O  

linear Dirac equation (1.1). 

(5.11) 
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Let us point out one of the possible ways of obtaining ungenerable families of 
solutions. On applying the procedure of generation of solutions by Lorentz rotations 
in the plane (xo, x l )  to the solution (5.1) one obtains 

92(x)  = exp(-ieyorl)  exp[tyl(yo- Y ~ ) ( x ~ - x S ) I  

xb = xo cosh 0 + xl sinh 8 

x exp{-fiA(f,y)1’2kyl[2x: + ( x ~ - x ; ) ~ ] } x  

xi = xl cosh 8 + xo sinh 8 x; = x2 x;=x, .  

Let us rewrite this expression in the equivalent form 

= exp( - ~ ~ Y O Y ~ )  exp[tyI(yo- ~2)(x0 cosh @ + X I  sinh e - x J I  ~ X P ( ~ ~ Y ~ Y , )  

x exp( -fe-yoyl) exp{ - f i h ( f ~ ) ~ ’ ~ ~ y ~ [ 2 ~ ,  cosh e+2x0 sinh 0 

+ (xo cosh e + x ,  sinh 8 -x2)’]} exp(;8yoyl) exp( -f8YoYl)x. 

On taking into consideration the identities 

[::cosh 8 + yl sinh e ff = O  
f f = l  exp( -iByoyI)ya exp(i@yoy,) = yl cosh 6 + yo sinh 8 
ff =- 

we obtain the following expression: 

+>(x) = exp[f( y1 cosh 8 + yo sinh e) (  yo sinh 0 + yl cosh 8 - y2) 

x ( xo cosh 0 + x1 sinh 0 - x2)] 

xexp{ -$A(f’x’)’’2k(yl cosh 8 +  y,sinh e )  
x [2x, cosh 6 + 2x0 sinh 6 + (xo cosh 8 + xl sinh 0 - X ~ ) ~ I } ~ ‘  

where X I =  exp( -i8yoy1)x. 

family of solutions of equation (1.1) of the form 

+(x)  = exp[f( ya)( yb) bx] exp{ - f i A  
where parameters a,, b, satisfy the conditions 

aa = -1 bb = ab = 0 ya = y,aw bx = bpxw ab = a,bp. 
Applying the formula for generating solutions by scale transformations 

Using rest transformations from O( 1,3) c @( 1,3) in the same way one can find a 

(5.13) (ya)[2ax + ( ~ x ) ~ ] } x  

+,(x) = e-kCC+l(X’) x: = e-x, ff = constant 
one can obtain 

$(x) = exp[i8(ya)(yb)bx] exp{ - f i h ( f ~ ) ’ ” ~ ( y a ) [ 2 a x +  f3(b~)~])x .  (5.14) 
At last, generating from (5.14) new solutions by the group of translations, we obtain 
an ungenerable family of solutions of the non-linear Dirac equation (1.1). 

(i)  k E R‘ k # O  

$(x)  = exp[$8(ya)(yb)bzl exp{ -4 iA( f~ ) ’”~(ya ) [2az+  e(bz)’]}x 

Z, = X, + e, ya = y,a* bz = b,z’ az = a,zp 
where x is an arbitrary constant spinor and 8, e,, a,, b, are constants satisfying the 
following constraints: 

aa  = -1 bb=O ab = 0. (5.15) 
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The same procedure when applied to (5.3), (5.4), (5.1 1) and (5.12) gives ungenerable 

(ii) k E [w’ k#O,$ 

families of the form 

+(x) = [(~z)’+(bz)’]-’/~ exp[ -f(ya)(yb) tan-’(az/bz)] 

x exp{+i2Ak(2k - 1)-’(gx)’/2k(yb)[(az)2+ ( b ~ ) ’ ] ( ’ ~ - ’ ) ’ ~ ~  I X  (5.16) 

where aa = -1, bb = -1, ab = 0, z, = x, + O r ,  6, being arbitrary constants, and x is an 
arbitrary constant spinor. 

(iii) k = $ 

+(x) = [(az)’+(bz)’]-’/* exp[ -f(ya)(yb) tan-’(az/bzj] 

x expi -iiA gx( 1 + e’)-’( yb + Bya) 

x {ln[(az)’+ ( b ~ ) ~ ] + 2 8  tan-’(az/bz)}Ilx 

where z, = x, + 0, and a,, b,, e,, 8 are arbitrary constants satisfying conditions (5.16). 

(iv) k = i  

+(x) = exp[~(yc)(yb)bz]{(ya+~yb)(az+~bz)+~yc[cz+(b~)~]}w-’ 

x exP{-iAxx(P:+ P : ) - ’ [ P l ( r a  + PYb) + f P 2 Y C l  

w = (az + pbz)’+$[cz + (bz)’]’ 

x [ ~ l ( a ~ + ~ b z ) + $ P 2 ( ~ ~ + ( b ~ ) 2 ) ] ~ - 1 } ~  

Z, = X, + e, 
and e,, a,, b,, c,, P, Pi are arbitrary constants satisfying the conditions 

ab = bc = ca = bb = O  aa = -1 cc = -4. (5.17) 

(v) k<O 

4 ( X I  = exP[a( YC 1 ( r b  ) bz ]U{( ya + P y b  ) ( az + Pbz) 

+$(rc) [cz+(b~)~I}f (w)+ig(w)Dx 

Z, = X, + e, w = ( ~ z + ~ b z ) ~ + ~ [ c z + ( b z ) ~ ] ~  

withf(o) ,  g ( o )  from (5 .8 ) .  Parameters a,, b,, c,, 6, satisfy conditions (5.17) and x 
is an arbitrary constant spinor. 

(vi) k E R’ k#O 

+(XI =exp[f(ya)(yb) ln(az+bz)l  exp{[f(yc)(ya+yb) 

+(x) =exp[i(ya)(yb) ln(az+bz)l  exp{[i(yc)(ya + r b ) - i A ( x ~ j ” ~ ~ y c ] ( c z ) } ~  (5.19) 

where z, = x, + O r ,  x is an arbitrary constant spinor and a,, b,, c, are arbitrary 
constants satisfying conditions 

+iA(f,y)1’2k(yc- ya-yb)][ln(az+ bz ) -cz ]}~  (5.18) 

(5.20) 
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where z, = x, + e,, ,y is an arbitrary constant spinor and a,, b,, c,, 6, are arbitrary 
constants satisfying the conditions 

ab = bc = ca = bb = 0. (5.21) 

In conclusion of this section, let us consider the special case of equation ( 1 . 1 )  when 
k = 2. It is common knowledge that the corresponding non-linear Dirac equation is 
conformally invariant (Giirsey 1956, Mack and Salam 1969). This enables us to obtain 
a larger family of solutions with the help of a procedure of generating solutions by 
special conformal transformations, corresponding formulae having the form (Fushchich 
and Shtelen 1983b) 

aa = cc = -1  

+2(x) = u - 2 ( x ) ( 1  - (YX)(YB))+I(X’) 

X ;  = ( x ,  - e , ( xx ) )a - l ( x )  
(5.22) 

Using solutions (5.14) under k = $  as Ilrl(x) we obtain a new solution of the 

U ( X )  = 1 -2ex + ( e e ) ( x x ) .  

conformally invariant equation ( 1  . l )  

+ ( X I  = [ I -  ( Y X ) ( Y ~ ) I ~ - ~ ( X )  exp{G(ra)(rb)(bx - ( b e ) ( x x ) ) u - ’ ( x ) ~  
x exp{ - $ i A ( f ~ ) ” ~ y a [ 2 ( a x  - ( a B ) ( x x ) ) a ( x )  

+ e’( bx - ( ~ @ ) ( X X ) ) ’ ] U - ~ ( X ) } ~  (5.23) 

The same procedure when applied to solutions (5.18)-(5.20) under k = 2 give some 
where aa = - 1 ,  bb = 0, ab = 0 and e,, e’ are arbitrary constants. 

new solutions of the non-linear Dirac equation. 

6. Exact solutions of the system (1.2) 

We shall seek solutions of (1 .2 )  when m, = 0, m2 = 0, the following ansatz being used: 

where bb = 0, ax = u,x* and f; g ,  , g, are arbitrary differentiable functions. 
Substitution of (6.1) into (1.2) gives the system of ODE 

=f 
(aa)g,  = -2ebB - A2g,(2abg,g2+ (aa)g : )  

- ( a b ) l 1 =  -Azg*(2abg,g,+ (aa )g : )  (6.2) 
where a dot means differentiation with respect to w = ax, be = b,V,  aa = a,a,, ab # 0, 
0, = ~ Y ~ X ,  P = 0,3.  

- 

We have succeeded in integrating the system (6.2) in the case aa = 0, ab # 0,  i.e. 

A d 2  =f 
g 2 d =  -(ebe)/’(Azab) (6.3) 
g1= 2A2glg:. 

From the second equation it follows that 

g ,  = - (ebO)/(A2ab)g;’. (6.4) 
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Substituting (6.4) into (6.3) we obtain ODE for determination of g,(w) 

Integration of the last ODE yields 

Finally 

c, # 0 g,  = *CC;”2[(C1w+C2)2+kZ/A2]”2 (6.7) 

A , < O  g, = * (21kl IAzl-’/’w + c2)1’2. (6.8) 

c, # O  g2= - ( k C , / A , ) [ ( C , w  + Cz)’+ k2/AJ1 (6.9) 

Substituting the above results into (6.4) we find expressions for g2(w) 

A 2 < O  g,=  -(k/lA21)(2Ikl l A 2 1 - 1 / 2 ~  + CJ-’. (6.10) 

Substituting these expressions into the first equation from (6.3) we obtain f(w) 

c, # 0 (6.11) 

A , < O  f ( w )  = AllAzl-’’2 ln(2klA21-1/2w + C,) (6.12) 

Substitution of (6.7)-(6.12) into (6.1) gives two families of solutions of the initial 

f ( w )  = -AlA;1/2 tan-1[k-1A:/2( C , w  + C,)] 

where C,, C, are arbitrary constants. 

equation ( 1.2) 

(i)  A2#0  c, # 0 

+(x) = yb exp{-iA,A tan-’[A :”k-’(C,ax + C2)]}x  

SQ,(x) = *b,C;’/’[ (C,ax + C2l2 - k2A;’I1/’ 

-a,(kC,/Az)[(C,ax+ C2)’- k2/A2]- ’ .  (6.13) 

( i i )  A2<0 

+(x)  = yb exp[ - i A l ~ A z ~ - l ”  ln(2klA2)-1/2a~ + CJ]x 
(6.14) 

~ P , ( x ) =  +b, (2klAzl - ’ /2~~+ C 3 ) ” 2 - ~ a z ( k / l A , l ) ( 2 k l A , l - ” 2 ~ ~ +  C3)-’ 

where k = a e b @ ( x y , x ) / (  ab ) ,  C,, C2, C3 are arbitrary constants and x is an arbitrary 
constant spinor. 

Let us note that the solutions obtained depend analytically on parameters A I ,  e 
while parameter A, is included in a singular way. It means that solutions (6.13) and 
(6.14) cannot be obtained in the framework of perturbation theory by expanding in a 
series with respect to a small parameter A’. 

On introducing as usual the tensor of the electromagnetic field F,,,= 
ad,,/dx,, -a.d,/ax, we obtain 

FIly = * (a,b, - a&,) C :I2[ ( C ~ U X  + Cz)’- k2/AJ1/2 

Fwy = * ( ~ , b , - ~ , b , ) k l A , l - ” ~ ( 2 k l A , l - ” ~ ~ ~ +  C3)-1/2 

for solutions (6.13) and (6.14) respectively. 
To obtain new families of solutions of the system (1.2) one can use its symmetry 

under conformal group C( 1 , 3 )  (Fushchich and Zifra 1985). The formula for generating 
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solutions by special conformal transformations has the form (Fushchich and Shtelen 
1983c) 

+2(x) = fl-2(x)[1 - (Yx) (Y~) lh (x ’ )  
a:)(x) = a-2(X)[g,ya(X)+2(e,~y - e,x, +2exx,e, -xxe,e, - eex,x,)]dy,,(x‘) 

X: = (x+ - e,xx)a-’(x) U ( X ) =  I - ~ ~ x + ( ~ ) ( x x ) .  

Using (6.13) and (6.14) as +,(x) and d;’(x) one can construct new multiparameter 
families of exact solutions of (1.2) but we omit corresponding formulae because of 
their cumbersome character. 

7. Conclusion 

In the present work, large classes of exact solutions of the non-linear Dirac equation 
and of the system of non-linear equations of quantum electrodynamics were construc- 
ted. Solutions obtained by Akdeniz (1982), Fushchich and Shtelen (1983a, b), Kortel 
(1956), Merwe (1981) and Takahashi (1979) can be obtained with the help of ansatze 

Most of the solutions depend analytically on constants A ,  hi, e. However solutions 
(6.13) and (6.14) have a non-perturbative character because of their singular 
dependence on the parameter h 2 .  

We have constructed ansatze which reduced the four-dimensional systems (1.1) 
and (1.2) to three-, two- and one-dimensional systems of PDE. It is important to note 
that these ansatze can be applied to any spinor equations which are invariant under 
the extended PoincarC group @( 1,3). 

(3.16)-( 3.29). 

Appendix 

It is important to note that the ansatze (3.16)-(3.29) do not exhaust all possible ansatze 
for the Dirac equation (1.1). To reduce (1.1) to ODE one can use the following ansatz: 

$ ( X I  = [ig(@)+f(w)y, a w l q L l x  (‘41) 
where g ,  f are unknown real-valued functions, x is an arbitrary constant spinor and 
w = w(x) is a real-valued function satisfying conditions of the form 

Substitution of (Al)  into (1.1) gives a system of ODE for determination o f f  and 
g. We now list some multiparameter families of exact solutions of the non-linear Dirac 
equation (1.1) obtained in this way. 

(i) k E R‘ k Z O  
$(x) = [-i sinh(h(Xx)”2kw) + y,(dw/ax,) c o s h ( h ( X ~ ) ” ~ ~ ~ ) ] x  

where w(x) is determined by the following equalities: 

( a )  

(b)  
and pi = pi( ax + dx), +i = qbi(w + dx)  are arbitrary differentiable functions. 

w = bx cos pl  + cx sin p1 + p2 

ax + bx cos qbl + cx sin + qb2 = 0 
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where ‘pi = cpi(ax +dx) are arbitrary differentiable functions and the dot means 
differentiation with respect to ax + dx. 

(iii) k = 1 

$ ( x )  = ( 1  + O2w2)-’/’[i - e( (  y a ) ( a x )  - ( y b ) ( b x )  - ( y c ) ( c x ) ) ] x  

w = [( - ( b ~ ) ~  - ( C X ) ’ ] ’ / ’  

and the following condition holds: 

3 e - A ( j x )  ’ I Z k  = 0. 

In (A3)-(A6) a,, b,, c,, d,  are arbitrary parameters satisfying the following conditions: 

-aa = bb = CC = dd = -1 

ab = a c =  ad = bc=  bd = cd = O .  

References 

Akdeniz K G 1982 Lett. Nuouo Cimento 33 40-4 
Ames W F 1972 Nonlinear Parfial Differential Equafions In Engineering ( N e w  York: Academic) 
Fushchich W I 1981 The symmetry of mathematical physics problems in algebraic-theoretical studies in mathe- 

matical physics Kiev Mathematical Institute 6-28 
- 1983 On symmetry and some exact solutions of some many-dimensional equations of marhematical physics 

in theoretical-algebraic methods in mathematical physics problems Kiev Mathematical Institute 4-23 
Fushchich W I and Serov N I 1983 Dokl. Akad. Nauk 273 543-6 
Fushchich W I and Shtelen W M 1983a Dokl. Akad. Nauk 269 88-92 
- 1983b J. Phys. A:  Math. Gen. 16 271-7 
- 1983c Phys. Left. 128B 215-7 
Fushchich W I and Zifra I M 1985 Teor. Mar. Fir. 64 41-50 
Gursey F 1956 Nuouo Cimento 3 980-7 
Kortel F 1956 Nuouo Cimenfo 4 210-5 
Lie S 1891 Vorlesungen uber Differentialgleichungen mil becanren infinitesimalen Transformationen (Leipzig: 

Mack G and Salam A 1969 Ann. Phys., N Y  53 174-202 
Merwe P T 1981 Phys. Lett. 106B 485-7 
Takahashi K 1979 1. Math. Phys. 20 1232-8 

Teubner) 


